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Theorem (characterization of the Fraissé limit)

Let (K, L) be a free completion and let U be an L-object. Then
the following are equivalent.

U is cofinal and homogeneous in (K, L),
U is cofinal and has the extension property in (IC, L),
U is the L-limit of a Fraissé sequence in K.

Moreover, such U is unique and cofinal in £, and every
KC-sequence with L-limit U is Fraissé in K.

Theorem (existence of a Fraissé sequence)

Let K # 0 be a category. K has a Fraissé sequence if and only if
K is directed,
K has the amalgamation property,

K has a countable dominating subcategory.
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Inverse sequence (Xj, fi):
® X, = (X,)necw sequence of structures,

® f. = (fom: Xn < Xm)n<mew Structure-preserving maps such
that o, mo fmk = fok and f, , =idx, for n < m < k.

® We write f, for f, ny1.
The limit cone (Xoo, i 00):
® Xoo = {x €[], c0, Xn : Xn = fo,m(xm) for every n < m}

® fnoo: Xn ¢ X is the restriction of the projection.
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® Take (X, f.) such that every X, is a finite discrete space and
every f, m is a (continuous) surjection.

® Then X is a zero-dimensional metrizable compactum.

® Every zero-dimensional metrizable compactum can be
obtained this way.

® Let IC be the category of all nonempty finite discrete spaces
and all surjections and let £ be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.

® Then K is a Fraissé category and the Cantor space is the
Fraissé limit.

How to obtain non-zero-dimensional spaces?
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® \We consider a subcategory F C K that is Fraissé and the
subcategory o F C L of limits of F-sequences

e |f F consists of all linear graphs, then the Fraissé limit is a
pre-space of the pseudo-arc [Irwin-Solecki].

® Another example: if F consists of all connected graphs and
monotone quotient maps, then the Fraissé limit is a pre-space
of the Menger curve [Panagiotopoulos—Solecki].

® Fraissé limit is the pre-space, not the space. Properties of the
space have to be transferred through the quotient map.

Can we obtain the desired compactum directly as a Fraissé limit?
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® We work directly with metrizable compacta and continuous

surjections.

® Fraissé-theoretic properties involve approximate commutativity
of diagrams.

® For example, homogeneity of the pseudo-arc IP: for every
continuous surjections f, g: P — [0,1] and every £ > 0 there
is a homeomorphism h: P — P such that f ~. g o h.
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Fraissé theory of MU-categories overview

Theorem (characterization of the Fraissé limit)

Let (KC, £) be a free MU-completion and let U be an L-object.
Then the following are equivalent.

U is cofinal and homogeneous in (KC, L),
U is cofinal and injective in (K, L),
U is the L-limit of a Fraissé sequence in K.

Moreover, such U is unique and cofinal and homogeneous in L,
and every K-sequence with L-colimit U is Fraissé in .

Theorem (existence of a Fraissé sequence)
Let K # 0 be an MU-category. K has a Fraissé sequence if and
only if

IC is directed,

IC has the amalgamation property,

IC has a countable dominating subcategory.
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® |et 7 be the category consisting of the unit interval and all
continuous surjections.

® Then Z is Fraissé, oZ consists of all arc-like continua, and the
Fraissé limit is the pseudo-arc.

® let Sp be the category consisting of the unit circle and all
continuous surjections whose degree uses only primes from a
set P.

® Then Sp is Fraissé, cSp consists of circle-like continua of
“type < P*°", and the Fraissé limit is the P-adic
pseudo-solenoid.

However, our small objects are not finite any more.
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[B.—Bice—-Vignati]
Small objects are still finite graphs, but morphisms are
relations.
A morphism R: Y < X is RC Y x X that is
® co-surjective: Vx Jy yRx,
® co-injective: Vy Ix R(x) = {y},
® edge-preserving: yRx A y'Rx’ A xEx' = yEy'.

Let K denote the corresponding category.
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® A sequence (X,, R.) in K induces an w-poset P = |
where (n,y) > (m, x) if n < m and yR, mx.

nEw

e PP induces the spectrum SPP = {S C P : S minimal selector},
where S C P is a selector if S is upwards closed and
SN X, # 0 for every n € w.

® SP is endowed with the topology generated by the sets
pS={SeSP:pe S} forpelP.
® Then SP is a second-countable T; compactum.

® Every second-countable Ti-compactum can be obtained this
way.
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Approach 3: Spectra of w-posets

e If F C K is the category of all linear graphs and monotone
morphisms, then F is Fraissé and the unit interval is the
“limit".

o If F C K is the category of all linear graphs and all
morphisms, then F is a Fraissé and the pseudo-arc is the
“limit".

o If F C K is the category of all fan graphs and spokewise
monotone morphisms, then F is Fraissé and the Lelek fan is
the “limit”.

But instead of taking the limit, we introduce an ad hoc
construction.
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Spectra as limits

Maybe the spectrum can be viewed as a limit after all.

Let us put Xoo = SIP and yR, ox iff y € x.

Then (X,, Ry oo) is the unital lax adjoint limit (as a set)
endowed with the initial topology with respect to lower
semicontinuity.

® .. this is work in progess.
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